

INSTRUCTIVO "CRITERIOS DE APLICACIÓN DE LAS FÓRMULAS DE INTERPOLACIÓN"

El presente instructivo es complementario a las condiciones definidas en la Resolución de Acreditación, pues establece criterios de aplicación de las fórmulas de interpolación y entrega ejemplos de uso de cada uno de los casos detallados en el numeral 2.4 de la Res. Ex. Nº 4102 de 2015. Este instructivo se publica en el sitio web de la División de Transporte Público Regional para conocimiento de todos los operadores tecnológicos.

1. Sistema de Coordenadas

El Sistema de Coordenadas que utiliza el MTT para el cálculo de los indicadores trabaja con coordenadas geográficas bajo datum de referencia WGS84, la posición espacial, latitud y longitud están en un sistema <u>decimal</u>. Por lo tanto toda la información de posición de los puntos de control sobre el trazado (milepost) se encuentra referida a este sistema.

Si un Operador Tecnológico utiliza un sistema diferente, debe realizar las reproyecciones y ajustes apropiados a la información entregada por el MTT de tal forma que pueda utilizar correctamente las fórmulas de interpolación y no existan diferencias debido a errores de ajuste.

2. Indicador de Integridad de Seguimiento de Vehículos

Dado que la plataforma Star sólo realiza verificaciones de formato de los registros, para contabilizar el número de registros íntegros del archivo de seguimiento de vehículos necesario para calcular el indicador de acreditación de Integridad de Seguimiento de Vehículos, a nivel de base de datos el MTT revisa que se cumplan las siguientes condiciones de contenido de los registros:

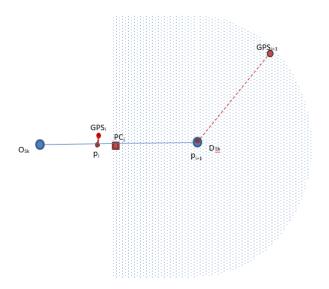
- Revisión de formato de patente: se revisa que la PPU informada cumpla con tener un formato de dos letras y cuatro números o 4 letras y dos números, sin espacios.
- **Revisión de formato IMEI**: se revisa que el código IMEI informado cumpla con tener un formato de entre 14 y 16 decimales entero positivo. En el caso que para acreditación envíen información de flota mixta (On line + Off line) este campo podrá venir con valor igual a 0 (cero), pero no nulo.

- Comprobación de que la información GPS pertenezca al mes analizado: se revisa que la información del campo FECHA_HORA_CHILE_GPS pertenezca al mes del proceso. Se consideran válidos registros del primer día del mes posterior al del proceso, de tal forma de completar las expediciones.
- **Revisión del campo DISTANCIA_RECORRIDA**: Esta comprobación revisa que el campo DISTANCIA RECORRIDA no tenga valores negativos.
- **Revisión del Operador de Transporte**: Esta comprobación revisa que el Operador de Transporte tenga asociado el servicio que se está informando, lo anterior se realiza comprobando su consistencia con el campos servicio_id (identificador único del servicio).
- Comprobación del nombre del servicio: Esta comprobación revisa que el nombre del servicio informado corresponda con el identificador único del servicio informado.
- Revisión de registros duplicados: Esta comprobación revisa que el campo REGISTRO_ID, que corresponde a la concatenación de los siguientes campos: PPU - Fecha_Hora_Chile_GPS - Tipo_Evento , incluyendo "-" entre los campos, sin espacios intermedios, sea único para el periodo.
- Revisión del tipo de viaje y sentido: Esta comprobación revisa que los campos TIPO_VIAJE y sentido cumplan con la regla que indica que para cada viaje no comercial se debe indicar sentido -1, además de comprobar que los valores válidos para el campo sentido son 0 y 1 en los viajes comerciales.
- **Revisión del Estado de Motor y Tipo de Evento**: Esta comprobación revisa que los campos Estado_Motor_GPS y Tipo_Evento cumplan con la regla que indica que si el Estado Motor es igual a 0 (cero), motor apagado, el Tipo de Evento debe ser distinto de 0 (cero), posición por tiempo.
- Comprobación de eventos GPS fuera de la zona del perímetro de exclusión: Se detectan conjuntos de eventos GPS que no coincidan con la zona del perímetro de exclusión y descartarlos a nivel de base de datos, de modo de no recargar a la aplicación del algoritmo con registros sin utilidad, definiendo rectángulos sobre los perímetros y revisando que los eventos se encuentren dentro de los intervalos de coordenadas que los definen.

La siguiente tabla muestra los intervalos de los rectángulos, que se utilizarán para la comprobación de que los eventos GPS no estén fuera del Perímetro:

PERIMETRO	LATITUD MÍNIMA	LATITUD MÁXIMA	LONGITUD MÁXIMA	LONGITUD MÍNIMA
VALDIVIA	-39,731124	-39,948131	-73,468016	-73,128229
TEMUCO	-38,531774	-38,967216	-72,953684	-72,235563
GRAN VALPARAISO	-32,875120	-33,206341	-71,721555	-71,323234
TALCA	-35,331172	-35,547465	-71,836719	-71,453388
GRAN CONCEPCION	-36,473892	-37,075301	-73,223052	-72,835794
VILLARRICA	-39,255567	-39,345511	-72,322793	-72,202302
GRAN SANTIAGO	-33,268326	-33,802982	-70,907542	-70,366214
RANCAGUA	-34,113748	-34,237480	-70,860111	-70,595515
LOTA	-36,761924	-37,131692	-73,249834	-72,952877
CASTRO	-42,425060	-42,524997	-73,826059	-73,719578
QUELLÓN	-43,098372	-43,147151	-73,667513	-73,538428
PUNTA ARENAS	-53,109670	-53,198471	-70,963214	-70,849287
OSORNO	-40,564683	-40,599780	-73,189448	-73,084157
ARAUCO	-36,795969	-38,387811	-73,724600	-73,073863
TOCOPILLA	-22,054735	-22,118386	-70,219411	-70,180745
ANTOFAGASTA	-23,430164	-23,756150	-70,517787	-70,352414
LINARES	-35,801502	-35,893706	-71,646072	-71,494679
QUINTERO	-32,613411	-33,134369	-71,703840	-71,300324
CALAMA	-22,420638	-22,513914	-68,970768	-68,848732
IQUIQUE	-20,190430	-20,378408	-70,185362	-70,042000
ARICA	-18,334542	-18,542983	-70,360881	-70,217161

3. Parámetros de Interpolación

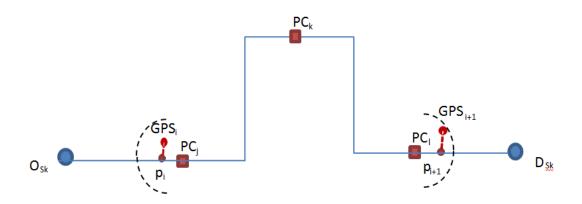

Los siguientes parámetros requeridos para realizar la interpolación de la hora de pasada por un punto de control a partir de dos eventos GPS, deberán ser establecidos por cada Secretaría Regional Ministerial. Sin perjuicio de ello, para efectos de acreditación se utilizarán los siguientes valores:

- MaxVelLineaPtosGpsUrbano = 72,0 km/hr
- MaxVelLineaPtosGpsRural = 100,8 km/hr
- MaxVelSobreTrazadoPtosGpsUrbano = 72,0 km/hr
- MaxVelSobreTrazadoPtosGpsRural = 100,8 km/hr

4. Ejemplos de interpolación:

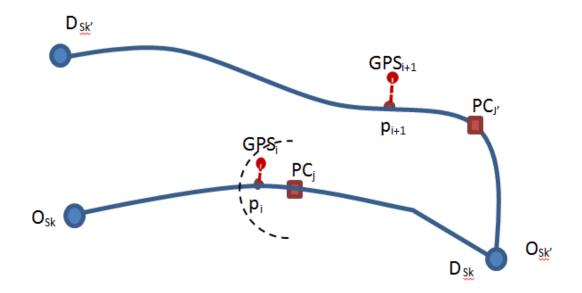
En los ejemplos a continuación se muestran diferentes posibilidades de ubicación de los dos eventos GPS involucrados en la interpolación de un punto de control y las consideraciones que ese deben tener en cuenta para realizar la interpolación de la hora de pasada por el punto de control.

Ejemplo 1: Aplicación de Buffer Dinámico

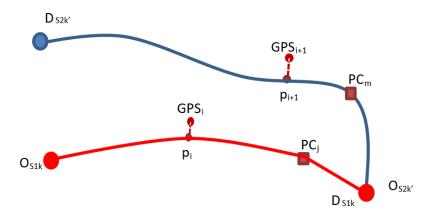


En este ejemplo corresponde utilizar las fórmulas de interpolación del Caso 1 con bufferServicios variable (de 400 metros si el punto de control es urbano y 1800 metros si es rural). El punto de control PC_j es un punto de control final, el evento PC_j se

encuentra en a una distancia al trazado menor al parámetro bufferServicios, el evento GPS_{i+1} se encuentra a una distancia al trazado menor al parámetro bufferServicios variable que corresponda al tipo de punto de control y mayor al bufferServicios estándar. Si se cumplen el resto de los parámetros de tiempo, distancia y velocidad, corresponde interpolar la pasada por el punto de control $PC_{j.}$ Para utilizar el bufferServicios variable el evento GPS_{i+1} debe tener una distancia recorrida mayor que la del punto de control $PC_{j.}$


Ejemplo 2: Aplicación de Buffer en torno al punto de control

En este ejemplo corresponde utilizar las fórmulas de interpolación del Caso 1. El evento GPS $_i$ se encuentra en un radio en torno al punto de control PC $_j$ menor al parámetro bufferPtoControl, el evento GPS $_{i+1}$ se encuentra en un radio en torno al punto de control PC $_i$ menor al parámetro bufferPtoControl, la velocidad media sobre el trazado entre los dos eventos GPS es mayor al parámetro MaxVelSobreTrazadoPtosGps correspondiente a cada punto de control. En esta situación se debe interpolar la hora de pasada por los puntos de control PC $_j$ y PC $_i$ y no se debe interpolar la hora de pasada por el punto de control PC $_k$, pues la velocidad promedio muestra que no es posible respetando los criterios de velocidad máxima permitida, que el bus hubiese pasado por ese punto de control.

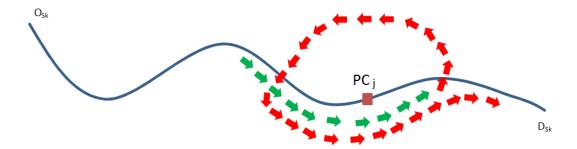

Ejemplo 3: Aplicación de Buffer en torno al punto de control y sentidos distintos

En este ejemplo corresponde utilizar las fórmulas de interpolación del Caso 2. El evento GPS $_i$ se encuentra en un radio en torno al punto de control PC $_j$ menor al parámetro bufferPtoControl, el evento GPS $_{i+1}$ se encuentra en un radio en torno al punto de control PC $_j$ mayor al parámetro bufferPtoControl, la velocidad media sobre el trazado entre los dos eventos GPS es mayor al parámetro MaxVelSobreTrazadoPtosGps correspondiente a cada punto de control. En esta situación, se debe interpolar la hora de pasada por el punto de control PC $_j$ y no se debe interpolar la hora de pasada por el punto de control PC $_j$, pues la velocidad promedio muestra que no es posible respetando los criterios de velocidad máxima permitida, que el bus hubiese pasado por ese punto de control.

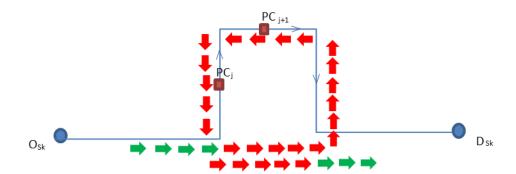
Ejemplo 4: Aplicación Caso 2 de interpolación e interservicios

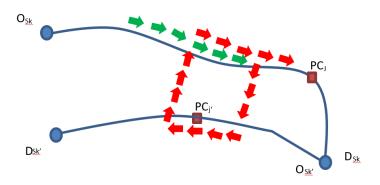
En este caso el trazado rojo corresponde a un servicio diferente que el trazado azul, en que el término del trazado rojo coincide en ubicación con el inicio del trazado azul. El evento $\mathsf{GPS_i}$ se encuentra realizado el servicio S1 en el sentido k y el evento cronológicamente posterior del mismo bus, el $\mathsf{GPS_{i+1}}$, se encuentra realizando el servicio S2 en el sentido k .

Si el par interservicios S1 – S2 está autorizado como interservicio en la zona regulada para los sentidos involucrados, corresponderá interpolar las pasadas por los puntos de control PC_j y PC_m con el par de eventos GPS_i y GPS_{i+1} , cuando se cumplan además todas las otras condiciones de distancia, tiempo y velocidad que lo permitan.


5. Abandono de trazado y Detención en el trazado:

Para efectos de la aplicación del criterio de validez de expediciones mencionado en la sección 2.2 de la Resolución de Acreditación, se deberá tener en consideración lo siguiente para el cálculo del tiempo de abandono o detención:


- La hora de término de la condición de validez debe verificar si 'Hora primer evento GPS posterior a la detención/abandono' 'Hora último evento GPS en detención/abandono' > 60 seg. Si la condición se cumple entonces HoraFin = 'Hora primer evento GPS posterior a la detención/abandono' 60 seg, de lo contrario HoraFin = 'Hora último evento GPS en detención/abandono'. El objetivo es capturar de manera más precisa la hora de término de abandono o detención en los casos en los cuales las transmisiones de GPS están más espaciadas que 60 seg. De esta manera si el intervalo es mayor a 60 segundos entre el momento en que se detecta el primer movimiento del bus y el evento GPS anterior, se asume que bus comenzó a moverse 60 segundos antes que el primer movimiento detectado.
- La hora de inicio de la condición de validez debe verificar si 'Hora primer evento GPS en detención/abandono' 'Hora último evento GPS anterior a la detención/abandono' > 60 seg. Si la condición se cumple entonces HoraInicio = 'Hora último evento GPS anterior a la detención/abandono' + 60 seg, de lo contrario HoraInicio = 'Hora primer evento GPS en detención/abandono'. El objetivo es capturar de manera más precisa la hora de inicio del abandono o detención en los casos en los cuales las transmisiones de GPS están más espaciadas que 60 seg. De esta manera si el intervalo es mayor a 60 segundos entre el momento en que se detecta la primera detención/abandono del bus y el evento GPS anterior, se asume que bus se detuvo o hizo abandono 60 segundos después que el último movimiento detectado.


- En el caso que el abandono del trazado cumpla con alguna de estas tres condiciones se considerará que la expedición no es continua y corresponden a dos expediciones,
 - Pasa dos veces por el mismo punto de control en el mismo sentido de la expedición original.

 Pasa por dos o más puntos de control en orden no cronológico respecto a su correlativo, en el mismo sentido de la expedición original.

o Pasa por un punto de control del sentido contrario a la expedición original.

